
SDGE EV Infrastructure Research
Jason Gu

jig036@ucsd.edu
Phi Nguyen

pnguyen@sdge.com

Abstract

As the adoption of electric vehicles (EVs) continues to rise across the United
States, the strategic placement of EV charging stations becomes a critical fac-
tor in supporting this growth. In collaboration with the Clean Transportation
Team at San Diego Gas & Electric (SDG&E), this research explores EV in-
frastructure within SDG&E service territories. We leverage a combination of
datasets, including DMV vehicle registration data, the Alternative Fuels Data
Center (AFDC) API, and census data such as the American Community Sur-
vey (ACS), to analyze EV ownership patterns, charging station density, and
their correlations with demographic and economic factors.
Key analyses include the growth of public EV charging stations, fitting a Pois-
son Distribution for EV registrations per zip code, and regression analysis
to explore the relationship between EV ownership and charger availability.
Furthermore, we conduct geospatial analyses to evaluate the relationship be-
tween EV charger density and demographic factors such as population size
and median household income across ZIP codes. By employing Monte Carlo
simulations, we model the expected EV registration per ZIP code.
The results highlight trends such as the accelerated adoption of EVs in recent
years and areas where EV charger density correlates with its surrounding
infrastructures. These insights inform potential guidance for equitable and
efficient expansion of EV infrastructure, contributing to the smooth adoption
of a cleaner future.

Code: https://github.com/JingChengGu/DSC180A-SDGE-Q1
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1 Introduction
As the incentive to purchase electric vehicles (EVs) surges and the adoption process grows
across the United States, the need for an efficient and equitable infrastructure of EV charg-
ing stations has become increasingly critical. The integration of EVs into urban and subur-
ban areas presents opportunities for sustainable transportation, but it also poses challenges
for energy providers and city planners. San Diego Gas & Electric (SDG&E) serves as a
key stakeholder in addressing these challenges within its service areas. I have teamed up
with its Clean Transportation Team to understand and optimize EV charger placements
to ultimately support the broader goals of clean energy adoption and reaching a cleaner
tomorrow.
With a surge in EV ownership, particularly in the years following 2019, disparities have
emerged in the accessibility of EV charging stations across neighborhoods. Factors such
as population density, median household income, proximity to highways or airports, and
much more influence the placement and utilization of these stations. This research aims to
address these disparities by combining time-series analysis, geospatial analysis, and predic-
tive modeling to identify patterns in previous EV charger placements and forecast future
EV charging station demands across SDG&E service territories.
In this paper, I utilize multiple datasets, including DMV vehicle registration records, the
Alternative Fuels Data Center (AFDC) API, and American Community Survey (ACS) census
data. By analyzing EV ownership patterns, charging station distributions, and socioeco-
nomic factors, I developed a broad understanding of EV infrastructure across SDG&E ser-
vice territories. Our EDA methodology includes statistical modeling, Poisson regression,
Monte Carlo simulations, and geospatial visualization, allowing me to evaluate the current
infrastructure and potentially project future demands.
The outcomes of this research provide insights for SDG&E and other stakeholders to en-
hance EV infrastructure planning. These findings support efforts to promote equitable ac-
cess to EV charging stations, particularly in underserved communities, while ensuring the
scalability aspect of clean transportation within SDG&E territories.

2 Exploratory Data Analysis Methods

2.1 Data Collection
In order to provide insight into the placement of EV Charging stations within SDG&E terri-
tories, I considered a lot of different factors and tested correlations that may have connec-
tions with the previous stations that were built around San Diego. Firstly, I gained access to
AFDC data that contained existing EV charging station infrastructures. I used the personal
key from the AFDC API to gather the dataset. Secondly, I gathered 4 years of DMV data
via DMV API, which contained EV registration data per ZIP code from 2019 - 2023. Lastly,
I downloaded census data from the United States Census Bureau that contained median

2



income per ZIP Code and population density per ZIP Code.

2.2 AFDC Dataset EDA
The AFDC data I gathered contained all alternative fuel stations across the United States.
However, as I was only interested in EV charging stations in SDG&E covered territories, there
where a lot of filtering done to clean the AFDC data and have it ready for analysis. One
positive thing about AFDC was how extensive its EV charging station data was, and I was
able to make good use of this advantage within my EDA. Using Pandas, Matplotlib, Plotly,
and OSMnx, I was able to perform basic time series analysis and categorical distribution
analysis.
After the data was cleaned and truncated down the columns into ones that were relevant
to me, I plotted a time series analysis that shows how much EV charging station count has
grown over the years from the early 2000s to today using plotly.

Figure 1: Growth of EV Chargers in SDG&E Territories

I then performed a categorical distribution analysis to explore the presence of different
EV charger providers across the region. ChargePoint Network emerged as the dominant
provider, with Tesla Destination and Non-Networked chargers following.
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Figure 2: Distribution of EV charger providers in SDG&E territories.

The growth of charger types in SDG&E territories was analyzed over time in three main
categories: Level 1, Level 2, and DC Fast chargers. The cumulative count demonstrates a
significant rise in Level 2 chargers, with DC Fast chargers also showing steady growth.

Figure 3: Growth of EV charging stations by type over time.

Using the OpenStreetMap network, I performed a driving distance analysis using OSMnx
between a UCSD Hopkins charging station and the SDG&E Headquarters. This analysis
highlights the calculated driving distance of approximately 13.8 miles (22.2 km).
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Figure 4: Driving distance analysis between UCSD Hopkins charger and SDG&E site.
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2.3 DMV Dataset EDA
The DMV dataset that I extracted via DMV API included all vehicles registered in California
from 2019 - 2024. The DMV dataset, similar to the AFDC dataset, needed some initial
cleaning before it was usable for analysis. After cleaning irrelevant columns and focusing
on SDG&E territories, I started my analysis process which consisted of using Pandas, Mat-
plotlib, Plotly, the statsmodels API, and Scipy for fitting Poisson distribution for predicting
yearly vehicle registrations.
The following line graph illustrates the growth pattern in EV registrations from 2019 to
2023 in the SDG&E service area. This trend reflects the rapid adoption of EV technology in
recent years, with a sharp rise in the number of EVs registered annually.

Figure 5: Growth of EV registrations in SDG&E territories over the years

In addition to cumulative growth, the yearly increase in EV registrations was analyzed. The
bar graph below highlights the year-over-year growth, showing significant increases in EV
adoption, especially between 2022 and 2023.
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Figure 6: Yearly growth of EV registrations in SDG&E territories

To further understand the distribution of EV ownership, the top 20 ZIP codes with the
highest number of EV registrations were identified. The bar graph below showcases these
ZIP codes.
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Figure 7: Top 20 ZIP codes with the highest EV registrations

A scatter plot was created to analyze the correlation between the number of EV owners and
the availability of charging stations in SDG&E ZIP codes. While there is a positive trend,
the scatter plot indicates significant variability, suggesting that charging station deployment
may not always correlate with EV density.
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Figure 8: Correlation between EV owners and EV charging stations in SDG&E territories

Lastly, a histogramwas created to visualize the Poisson samples for ZIP code 92122, derived
from Monte Carlo simulations. This graph helps to model the distribution of registered EVs
in this region, providing insights into the expected range of EV ownership in the future.
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Figure 9: Histogram of Poisson samples for ZIP code 92122

2.4 Census Data EDA and Cenpy
The Cenpy library was used to retrieve census data related to median household income,
and population density. The data was then used to find potential census correlation with
EV charging station density within the SDG&E service territories. By merging census data
with geospatial boundaries using the ZCTA shapefile, a geospatial analysis was conducted
on EV charger placement using folium.
The first map visualizes the density of EV chargers across ZIP codes within SDG&E territo-
ries. This visualization helps identify areas with high and low availability of EV chargers,
forming a basic understanding of EV charging station distribution at a glance.
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Figure 10: EV Charger Density by ZIP Code in SDG&E Territories.

The second map layers median household income with EV charger density. This analysis
helps understand whether income levels influence the availability of EV charging stations
in different ZIP codes.
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Figure 11: Median Household Income and EV Charger Density by ZIP Code.

The third map overlays population density and EV charger density. This visualization helps
determine if areas with higher populations have proportionally more EV chargers available.
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Figure 12: Population Density and EV Charger Density by ZIP Code.

The fourthmap visualizes the correlation betweenmedian household income and EV charger
density. The correlation score is calculated as:

Correlation Score= Median Income
Max Median Income ×

Charger Count
Max Charger Count

This map identifies ZIP codes where income strongly correlates with the availability of EV
chargers.
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Figure 13: Correlation Score Map for Median Household Income vs. EV Charger Density.

The fifth map visualizes the correlation between population density and EV charger density.
The correlation score is similarly calculated as:

Correlation Score= Population Density
Max Population Density ×

Charger Count
Max Charger Count

This map highlights ZIP codes where population density influences EV charger availability.
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Figure 14: Correlation Score Map for Population Density vs. EV Charger Density.

3 Results

3.1 AFDC Results
Using the AFDC dataset, I developed insights upon the overview of EV charging station
infrastructure in the SDG&E service territory. Figure 1 illustrates the steady growth of pub-
lic EV charging stations over the past decade, with a sharp increase between 2019 and
2020. This aligns with the broader trend of EV adoption within the United States. Figure 2
highlights the dominance of certain EV network providers, such as ChargePoint, across the
region. With a broad understanding of popular providers in the market, SDG&E’s Lovelec-
tric team would have a better understanding of their competitors. Figure 3 further breaks
down this growth by charger type, showing that Level 2 chargers are the most widely in-
stalled, followed by DC fast chargers. This makes sense since Level 1 chargers are mainly
for private home charging.
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3.2 DMV Results
The DMV dataset provided insights into EV ownership patterns across ZIP codes within
SDG&E territories. Figure 5 depicts the stable growth of EV registrations from 2018 to
2023. Figure 6 emphasizes the significant annual increase in EV registrations, particularly
between 2022 and 2023. It is shown that every year, the increase of EV vehicles is on the
rise consistently. Furthermore, Figure 8 reveals a moderate positive correlation between the
number of EV owners and the number of charging stations per ZIP code. Lastly, after fitting
the Poisson distribution on the EV registration per year, the Monte Carlo simulation provides
a rough guideline of the potential increase in the area, as seen in Figure 9. However, there
exist limitations to this method since the Poisson distribution depends on a constant increase
over the years but our DMV EDA proves an acceleration in the increase yearly. Therefore, the
Poisson distribution can only be used as a rough guideline for yearly increase, and for more
accurate predictions, the Non-Homogeneous Poisson Process could be used alternatively to
address the variability in its increase per year.

3.3 Census Results
The census data analysis revealed patterns in how socio-economic factors relate to EV
charger placement. Figure 10 shows the distribution of EV charger density across ZIP codes.
From the geospatial graph, it is shown that there exist a high density of EV charging stations
near the San Diego Airport, around UC San Diego, UC San Diego Hospital, as well as the
UTC mall. Figure 11 layers median household income with EV charger density, suggesting
that there is no immediate correlation between higher-income areas with access to public
chargers. Figure 12 overlays population density with EV charger density, showing a greater
correction compared to the median income analysis but still has no immediate correlation.
Correlation score maps in Figures 13 and 14 quantitatively assess the relationships between
income, population, and charger density, showcasing correlation for all ZIP Codes relative
to each other in SDG&E territories.

4 Discussion
The exploratory data analysis conducted on the AFDC, DMV, and census datasets provides
valuable insights into EV adoption trends and charger placement in SDG&E territories.
However, several key findings and limitations deserve further exploration.
Firstly, the AFDC analysis highlights the steady growth in public EV chargers over the past
decade, with Level 2 chargers dominating the market due to their practicality for public
use. Moreover, understanding market dominance by network providers, as shown in the
AFDC results, offers strategic insights for SDG&E to evaluate competitors. However, this
analysis does not account for the utilization rates of these charging stations, which may
vary significantly based on location and time.
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Furthermore, with OSMnx being a powerful tool to find road distances between locations,
it could be leveraged to find distances between chargers to gauge charger density within
ZIP codes and see which particular areas are under-served within ZIP codes. OSMnx could
also be used to find distances between highway exits to existing chargers to see if there is
a correlation between the two. OSMnx being such a versatile tool could be an incredible
way for engineers to perform geospatial analysis to deep-drive AFDC data even further.
The DMV data analysis revealed a clear upward trend in EV registrations across ZIP codes,
with a consistent acceleration in EV ownership in recent years. The Monte Carlo simula-
tion based on a Poisson distribution offers a rough guideline for estimating future growth;
however, it is limited in its ability to account for non-linear trends and variability in annual
increases. As the DMV data suggests an accelerating adoption rate, a Non-Homogeneous
Poisson Process or other time-series models may be more appropriate for accurately mod-
eling these trends.
Census data analysis provided insights into the socio-economic and demographic factors
influencing EV charger placement. The geospatial visualizations demonstrate high charger
density near major hubs, such as airports, hospitals, and malls, reflecting infrastructure
and urban planning priorities. However, the correlation analysis showed no significant
relationship between higher-income areas and public EV chargers, as wealthier individuals
tend to rely on private home charging infrastructure. Similarly, the analysis of population
density revealed no immediate correlation with EV charger density.
These findings emphasize the importance of considering additional variables, such as com-
muting patterns, energy consumption behavior, and charger utilization rates, to improve
the accuracy of charger placement models in the future. Furthermore, the limitations of
using static datasets for dynamic phenomena underscore the need for real-time data inte-
gration.

5 Conclusion
This study provides a foundational analysis of EV adoption and charger placement in the
SDG&E service territory using AFDC, DMV, and census datasets. The results reveal impor-
tant trends in the growth of EV infrastructure, ownership patterns, and the socio-economic
factors influencing public charger placement. While these insights serve as a valuable start-
ing point, this analysis highlights the need for further investigation. Future studies should
incorporate dynamic models, such as Non-Homogeneous Poisson Processes, and integrate
real-time data on charger utilization to better capture the evolution of EV adoption.
Despite its limitations, my findings and insights demonstrate the potential of data-driven
approaches to support clean transportation adoption. By building on these findings, SDG&E
can make more informed decisions to optimize EV infrastructure and foster equitable access
to public charging, ultimately accelerating the transition to sustainable clean transportation.
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