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Abstract

As the world slowly adopts electric vehicles (EVs) to promote cleaner trans-
portation, there is one key issue that hinders the widespread adoption of EV,
and that is the public EV charging infrastructure. Public EV chargers are sim-
ply unreliable and remains a significant barrier for individuals considering
an EV as their next vehicle. Unlike gas stations, where operational reliabil-
ity is nearly guaranteed, EV chargers frequently suffer from damaged cords,
broken screens, or software malfunctions. Current reporting systems rely on
phone calls or written feedback on an app like Plugshare, which lacks stan-
dardization and clarity on the specific damages.

The goal of this project is to automate EV charger fault detection by inte-
grating computer vision with structured user input. We use semantic seg-
mentation and binary classification to classify EV charger faults from images,
supplemented by user-reported classification from a menu.

The proposed solution is implemented as a mobile app prototype where users
can submit photos and select issue categories via a structured reporting inter-
face. Additionally, the app could integrate with PlugShare’s database to im-
prove the visibility of broken chargers. Our approach improves the efficiency
of fault logging, reduces reporting ambiguity, and provides utility companies
with structured insights for more responsive EV charger repairs.
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1 Introduction

The shift to electric vehicles (EVs) is essential for reducing carbon emissions and achiev-
ing sustainable urban mobility, as EVs have up to 67% fewer emissions over their lifetime
compared to ICE vehicles (Wood Mackenzi). However, one of the major challenges pre-
venting widespread adoption is the inconsistent reliability of public EV chargers. Unlike
gas stations, where infrastructure is well-established, EV chargers often suffer from hard-
ware failures, software glitches, and physical damages, leading to poor user experiences.
When a charger malfunctions, users typically report issues through phone calls, emails,
or app-based feedback, but these manual submissions are often vague, unstructured, and
lack key details. Utility companies must then dispatch technicians for on-site verification,
introducing delays in repairs and inefficiencies in resource allocation.

To address these challenges, the team developed FLARE (Fault Logging and Assessment for
Responsive EV repairs), an automated fault detection system that combines fault detection
and structured user reports to streamline the identification and resolution of charger issues.
We use Nvidia’s state-of-the-art semantic segmentation model (MIT-B3) to segment compo-
nents of EV chargers from user-submitted images. These images are then passed through
a Vision Transformer model (ViT) that classifies charger components as either ’healthy’ or
’broken.” These models are supplemented with user input from predefined issue categories
such as “damaged cord,” "broken screen,” "damaged plug,” or “out of order.” This struc-
tured input eliminates ambiguity and ensures standardized data collection. Ideally, the
system could interface with PlugShare’s API, allowing real-time updates on charger status
and improving visibility into infrastructure reliability.

Previous research primarily focused on charger availability tracking rather than fault de-
tection, relying on subjective, crowdsourced reports without automated validation. While
some platforms allow users to report issues, they lack integration with classification mod-
els and fail to provide structured data for maintenance teams. This project advances prior
work by implementing semantic segmentation for real-time fault detection and proactive
maintenance insights. By automating fault reporting and improving data quality, FLARE
enhances the efficiency of EV charger maintenance, reducing downtime and increasing user
confidence in charging infrastructure. This paper details the methodology, implementa-
tion, and evaluation of FLARE, providing a proof-of-concept for an improved EV charger
fault logging system.

2 Methods

2.1 Data Collection

To train the fault classification model, images of EV chargers were collected from both
manual and online sources. The dataset includes images taken under varying conditions to
improve model generalization.



Manual data collection involved capturing images of charging stations in different opera-
tional states, including healthy, broken screen, damaged cord, damaged plug, and out of
order. For more data variety, pictures of chargers were taken at multiple angles, but the
majority are from a front-facing perspective. Photos were captured during both daytime
and nighttime to account for lighting variations that may affect classification performance.
Charger locations were identified using PlugShare, with priority given to stations that were
either reported as faulty or undergoing maintenance.

To expand the dataset, additional images were sourced online. These images were gathered
from Google Images, Reddit, PlugShare, and blog posts discussing charger malfunctions.
Many of these sources contain real-world user-reported failures, providing valuable diver-
sity in the dataset. Images collected from online sources were manually reviewed to ensure
relevance and consistency with the manually collected dataset. Here are some example
images we collected 1

Examples of Collected Data:
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Figure 1: Example images of the chargers collected during data collection

All images were labeled into five predefined categories to facilitate supervised learning.
The labels assigned were: healthy, broken screen, damaged cord, damaged plug, and out
of order. The labeling process was performed manually to ensure high-quality annotations.
To maintain consistency, the images were in jpg format, resized, and pre-processed before
being used for training. In total, we ultimately collected 306 healthy charger images and
101 broken charger images.



2.2 Data Labeling

Once images of EV chargers were gathered, these images were manually labeled to prepare
for training. We used Segments.ai, a machine learning-assisted labeling tool to annotate
our collected images. By segmenting the components of EV chargers, such as screens, cords,
plugs, and bodies, we trained our classification model to recognize the features of an EV
charger. All of these images needed to have a .jpg extension to ensure streamlined model
training down the line. A total of 265 images were labeled, such as full-body images of
chargers, up-close pictures of screens, day- and night-time photos, or just plugs and cables.
Below are examples of data on the labeling results 2 and what the labeling process looked
like on Segments.ai 3.

Base layer Labeled Overlaid mask Base layer Labeled Overlaid mask
(Raw image) Ground Truth on image (Raw image) Ground Truth on image
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(Raw image) Ground Truth on image (Raw image) Ground Truth on image

=

Figure 2: Example of Segments.ai segmentation with 4 unique images, including the base
layer and overlaid layer for all images
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Figure 3: Labeling interface on Segments.ai

Once we labeled the images, we reviewed them to make sure that they were labeled ade-
quately, as some images were very difficult to label with great accuracy. After reviewing
all of our labeled images, we ended up with a total of 167 images to work with that were
of the correct file extension (.jpg) and labeled properly. Going into training, we know that
we were limited from our small dataset size, the quality of our data, and limited com-
puting power. These labeled images were exported from Segments.ai to HuggingFace-an
open-source platform for building, deploying, and testing machine learning (ML) models-
for model training, which can be seen (here).

2.3 Segmentation Model Training

Before labeling on the EV charger images started, we first experimented with a sidewalk
dataset from HuggingFace to experiment if this segmentation method was a feasible solution
to our problem. After experimentation, the NVIDIA MIT model (MIT-BO) proved to be
robust, despite being the lightest model out of the MIT family—sitting at only 3.7 million
parameters—which can be seen in this (documentation). Training MIT-BO on the sidewalk
dataset achieved 74.8% accuracy and a mean IoU of 0.159 across classes with significantly
limited training. Here is also a graph of how well the MIT-B model performs compared
to other segmentation models on the ADE20K dataset, where the y-axis the segmentation
mean loU, and the x-axis is the number of parameters each model has 4.
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Figure 4: Graph showing the performance of MIT-B compared to other segmentation models

Using the same framework for testing segmentation with MIT-BO on a sidewalk dataset, we
used an upgraded model (MIT B3) for our labeled dataset of EV chargers for better perfor-
mance. The dataset from the HuggingFace repository was saved under dskong07/chargers-
full-v0.1, and contains pixel-wise annotations distinguishing different components such as
the screen, body, cable, and plug. The MIT B3 model (segformer-b3-finetuned-segments-
chargers-full-v3.1) is a pre-trained SegFormer model fine-tuned for EV charger segmenta-
tion, imported from the transformers library. This model provides state-of-the-art perfor-
mance in semantic segmentation by leveraging transformer-based feature extraction. Here
is a visualization of the model’s architecture 5.
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Figure 5: Visual representation of the SegFormer Architecture

For dataset training, the collected images were first randomly shuffled and split into 80%
training and 20% testing subsets using train_test split(). The model leverages a learning
rate of 0.00006, a batch size of 2, and 50 training epochs. Data augmentation was ap-
plied using ColorJitter, which adjusted brightness, contrast, saturation, and hue to enhance
model generalization. The images and their corresponding labels were preprocessed using
Hugging Face’s SegformerlmageProcessor, which resized and normalized the inputs before
training. Training was conducted using the Hugging Face Trainer API and the model was ini-
tiated with SegformerForSemanticSegmentation.from_pretrained(pretrained model="nvi-
dia/mit-b0”), with performance monitored via Intersection over Union (IoU) and accuracy
metrics, computed using the evaluate library. The model’s predictions were interpolated
using bilinear scaling, and performance was assessed per category to ensure accurate seg-
mentation across all charger components. The best-performing model (MIT-B3) was auto-
matically saved and uploaded to the HuggingFace Model Hub for future deployment.

We made a color palette to visually differentiate each segmented class in the output images
(red for screen, green for plug, yellow for body, blue for cord, and purple for background).
The segmented outputs were then visualized using matplotlib.pyplot and PIL.ImageDraw to
overlay segmentation masks on the original images. These visualizations were used to eval-
uate the accuracy of the model in segmenting various charger components with intersection
over union (IoU) and accuracy measurements. IoU measures the interaction between pre-
dicted output and actual value, while accuracy measures how much of the prediction was
correctly classifying each component. Here are examples of how well each MIT model
classified a particular charger image in the results section 8.



2.4 Classification Model Training

After successfully segmenting the components of EV chargers, we trained Vision Transform-
ers (ViT) from HuggingFace to classify images of healthy and broken EV charger condition.
For each condition (screen, plug, cable, and out of order) we trained a ViT model with vit-
base-patch16-224-in21k. Here is a graph visualization of how Vision Transformers work
using a transformation encoder on the ImageNet dataset, performing even better than tra-
ditional convolution architectures 6. More information can be found (here). The dataset
consisted of images categorized into two classes: healthy with a label=0, and broken with a
label=1. Since some images were not in a uniform format, they were first converted to RGB
mode and saved as PNG files. Images were also renamed systematically for consistency. A
metadata.csv file was created to store file names and their corresponding labels.
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Figure 6: Here is the Vision Transformer Architecture

The dataset was loaded into a HuggingFace dataset and then divided into 80-20 train and
test splits. After being loaded in, the data was transformed using PyTorch’s torchvision:
with RandomResizedCrop, Normalization, and ToTensor, images were cropped to a stan-
dard size, normalized based on mean and standard deviation, and then converted into
tensors for model training.

Google’s Vision Transformer model used for image classification was initialized using Auto-
ModelForImageClassification.from_pretrained(checkpoint, num_labels=2). Then, a data
collator (DefaultDataCollator) was used to batch and pad inputs properly. The Trainer
API was used to train the model with the following hyperparameters: Batch size: 2 per
device, Learning rate: 5e-5, Epoch: 10, Gradient accumulation: 2 steps, Evaluation strat-
egy: step-based evaluation, Best model selection: based on accuracy. For model training,
Trainer.train() was used and handled the gradient updates, loss calculations, and back-
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propagation. After training, the model was uploaded to the HuggingFace Model Hub using
trianer.push_to_hub.

The trained model is then tested using the HuggingFace pipeline on a sample image from
the dataset, but not in the training set. The classification output provides confidence scores
for each class (healthy or broken) Here are some examples of classifications on different EV
charger conditions in the results section 10.

2.5 App Design

The FLARE platform is designed as a mobile application that enables users to report charger
faults by submitting images and selecting predefined issue categories. The app streamlines
fault reporting by integrating image classification with structured user input.

FLRE FLRE

Please take a clear picture :
of daﬂlage What problem are you facing?

Broken Screen

Damaged Plug
EV Charger not working?

Report Problem ¢ Damaged Cord
Out of Order

Housing Damage

[ Internal Proble: r;;l {' )
External Damages
Take a picture ->

Figure 7: Sample images of FLARE app prototype

The user interface consists of several key components. The home screen displays two report-
ing options for the user to select, “Internal Problems” or "External Damages”. The internal
problems report screen enables users to select a text description of the internal charger is-
sue (network connectivity, slow charging speeds, payment issues, unusual noise, burning
smell) for the relevant party responsible for repair. The external report submission screen
enables users to upload an image and select an issue category (broken screen, damaged
plug, damaged cord, out of order, housing damage). A categorized fault menu standard-
izes user input, ensuring uniform data collection. The charger status dashboard presents

10



reported issues in an accessible format and ideally would integrate with PlugShare’s data
about the respective charger.

When a user submits a report, the system processes the uploaded image through our fault
detection model. The detected fault type is then recorded in the database and displayed
on the dashboard for utility companies to review. This structured approach reduces ambi-
guity in fault reports and improves response efficiency. User inputs are necessary for cross
validating the model’s prediction with the actual problem users experience.

To enhance data reliability, the platform is designed to interface with PlugShare’s API. This
integration allows real-time updates on charger conditions, synchronizing user-reported
faults with crowdsourced feedback. By incorporating PlugShare’s data, the platform en-
sures that charger status reflects actual conditions, benefiting both users and maintenance
teams.
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3 Results

3.1 Segmentation Results
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Figure 8: Performance of 3 different levels of NVIDIA’s MIT-B SegFormer Segmentation

model

Looking at the figure above 8, we can see that the segmentation performance increases as
we use models with more parameters, (MIT-BO has 3.7 million, MIT-B2 has 25.4 million,
and MIT-B3 has 45.2 million). The MIT-B3 model achieved 87.1% mean accuracy across
classes, 93.5% overall accuracy, and a mean IoU of 0.804 across classes after fine-tuning.
Here is also a table showing the accuracy of our MIT-B3 segmentation for each component
of an EV charger 9. Accuracy in this context refers to the overall percentage of pixels that

are correctly classified across all image segments.
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Accuracy  Accuracy Accuracy Accuracy

Screen Body Cable Plug

0.769 0.944 0.771 0.900

Figure 9: Table showing the segmentation accuracy for each EV charger component

3.2 Classification Results

In the figure below 10, we can see an example of how well each problem was classified
regarding the screen, cord, plug, out-of-service chargers, and healthy chargers. The Vision
Transformer (ViT) model demonstrated strong performance in identifying damaged and
functional components, particularly in high-contrast scenarios where defects were visually
distinct. Screens with visible cracks, plugs with broken connectors, and frayed cables were
classified with high confidence, contributing to an effective fault detection pipeline.

Broken Screen Broken Cord Broken Plug

Broken Score: 0.692 Broken Score: 0.8 Broken Score: 0.692

Healthy Score: 0.308 Healthy Score: 0.2 Healthy Score: 0.308
Out of Service Out of Service Healthy Charger

|
|
Broken Score: 0.756 Broken Score: 0.73 Broken Score: 0.08
Healthy Score: 0.244 Healthy Score: 0.27 Healthy Score: 0.92

Figure 10: Classification scores on EV chargers from Hugging Face Vision Transformer
model

13



However, classification accuracy was challenged in cases where damage was subtle, such
as slight screen discoloration, minor abrasions on plugs, or partially detached cables. Low-
light environments and obstructed views occasionally led to misclassifications, as the model
relied heavily on clear structural differences to distinguish between healthy and broken
components. Reflection from charger screens or cables intertwined with external objects
also contributed to variability in classification accuracy.

Despite these limitations, the ViT model significantly improved fault detection by leveraging
attention-based feature extraction, capturing both global and local dependencies within im-
ages. This resulted in a more precise classification framework compared to traditional con-
volutional architectures, which often struggle with spatial relationships in complex scenes.
The ability to generate confidence scores for each class also enabled a more granular under-
standing of model performance, allowing for potential threshold tuning to optimize false
positive and false negative rates.

4 Discussion

The results of this study demonstrate how effective semantic segmentation and classifica-
tion models can be in automating EV charger fault detection. By leveraging Nvidia’s MIT-B
SegFormer models for segmentation and Vision Transformers for classification, we success-
fully identified and categorized charger faults with a relatively high accuracy, given our
limited dataset of 167 labeled images.

4.1 Segmentation Discussion

The segmentation results (Figure 8 indicate that model performance improves as we scale
up the Segformer MIT model to more complex architectures. The MIT-B3 model, which
has the highest number of parameters (45.2M), achieved a mean accuracy of 87.1% across
classes, an overall accuracy of 93.5%, and a mean IoU of 0.804. This performance exceeded
our expectations as our dataset was extremely limited compared to the scope of what we
were trying to classify. There are well over 10 different EV charger companies, with Charge-
point, EVgo, Electrify America, and Blink just to name a few, and each company has a few
different charger types to classify. Despite this wide range of images, MIT-B3 model proved
to be robust for our segmentation needs. However, there are limitations with our approach
because each one of our images needed to be manually collected and labeled before model
training could begin, leaving only a small subset of images for testing that were not used in
the training model. Minor misclassifications were observed in low-light or cluttered back-
grounds, suggesting that further improvements could be made through data augmentation
and additional fine-tuning.
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4.2 Classification Discussion

The classification models (Figure 10) demonstrate a relatively high confidence in distin-
guishing healthy from broken charger components. Each Vision Transformer model was
trained specifically for one component (screen, plug, cable, or charger status), resulting
in accurate predictions. The models performed particularly well on high-contrast images
where damage was clearly visible. However, misclassifications occurred in cases where
charger damage was subtle or partially obstructed, indicating a need for additional labeled
data, especially in challenging environmental conditions.

One key advantage of the classification approach is its ability to complement segmentation
results. By first segmenting the charger components and then classifying their condition,
the system ensures that fault detection remains both granular and accurate. This dual-step
approach minimizes false positives, ensuring that only relevant components are analyzed
for damage classification.

Again, one of the key limitations to this classification is our limited-sized dataset, as finding
many images of broken charger components is difficult. However, this Vision Transformer
model still gave promising results when classifying a variety of EV charger defects.

To enhance future classification accuracy, additional training data encompassing a broader
range of charger models, lighting conditions, and environmental occlusions should be in-
corporated. Further fine-tuning through data augmentation techniques, such as adaptive
contrast adjustment and synthetic occlusion, could help the model generalize better across
diverse real-world conditions. Additionally, integrating multimodal data sources, such as
error logs from the chargers themselves, could provide supplementary context to refine
predictions and reduce ambiguity in challenging cases.

4.3 Implications for Fault Detection and EV Infrastructure

The results highlight the feasibility of deploying automated fault detection in EV charger
networks. Compared to existing reporting methods—where users manually describe issues
in PlugShare or call maintenance teams—our model provides structured, real-time, and
standardized fault reports. By integrating these results into a mobile app interface (Figure
7), users can submit structured reports with greater accuracy, and utility companies can
act on more reliable, data—driven insights.

Furthermore, the segmentation model’s high IoU score suggest that real—world deploy-
ment is reliable, given proper calibration. However, real—world performance could be
refined with more data in diverse conditions, such as varying lighting, weather and charger
types. Additionally, incorporating active learning—where the model continuously improves
by retaining on new reported faults— could help sustain and even improve performance
over time.
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5 Conclusions

The FLARE project combines manual and online image collection, computer vision-based
fault detection with Vision Transformers, and a structured reporting interface to improve EV
charger reliability. The current model development focuses on state-of-the-art segmentation
techniques with transformer models, providing a foundation for future deep learning-based
improvements. The mobile app is designed to integrate with PlugShare, ensuring real-time
updates and improved charger fault visibility.

The results from our project confirm that deep learning-based fault detection with vision
transformers for EV chargers is a viable and scalable solution. By integrating semantic seg-
mentation with classification models, we demonstrate a system that automates fault logging
and enhances reporting efficiency. With further development, this approach has the poten-
tial to improve EV charger maintenance, reduce downtime, and boost consumer confidence
in charging infrastructure, ultimately accelerating the adoption of electric vehicles.

5.1 Future Work

Since this project is just the beginning to demonstrate the concept of fault detection for EV
chargers, FLARE has many areas for growth to make it truly remarkable.

One of the key areas for expansion is developing a back-end infrastructure to support a fully
functional mobile application. While our current prototype demonstrates fault detection
capabilities, integrating this technology into a user-friendly app would allow EV owners
to report charger malfunctions efficiently. A robust back-end system would manage user
submissions, store fault reports, and facilitate communication between users and service
providers.

Another critical enhancement is integrating PlugShare’s API to expand the app’s function-
ality. PlugShare is one of the most widely used platforms for EV charger availability and
status updates, and integrating its API would streamline real-time reporting. This would
allow FLARE to not only detect faults but also update charger statuses dynamically, making
the app more practical and appealing for widespread adoption.

To address privacy concerns, we plan to implement automated face and license plate blur-
ring in user-submitted images. Since users will be capturing photos of public charging sta-
tions, ensuring privacy protection is essential. By integrating computer vision techniques
for anonymization, we can prevent the collection of sensitive personal data while still pre-
serving the necessary details for fault detection.

Finally, to ensure that FLARE continuously improves over time, we aim to implement data
feedback loops and continuous model training. User-submitted images and reports will
be incorporated into our training pipeline, allowing the model to refine its classification
accuracy iteratively. This approach will help the system adapt to new types of failures,
changing charger designs, and real-world conditions, making FLARE increasingly robust
and scalable.
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By focusing on these future enhancements, FLARE has the potential to transform EV charger
maintenance into an efficient, data-driven process, ensuring greater reliability and user
trust in public charging infrastructure.
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